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Abstract

We present a new algorithm to calculate the near-field distribution of scattered light of multiple nanospheres based on

recursive order-of-scattering (OS) and the matrix inversion approaches, which avoids the divergent problem encountered

in origin OS method at the resonance condition. Using this method, we investigate the light-transport properties of linear

chains of Ag nanospheres. We found a maximum 3dB damping length of 1.4 mm of the light propagation when the first

sphere of the linear Ag spheres with the radius R ¼ 25 nm was illuminated. The optimal configurations that favor the

photon energy transport are investigated as well.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In a recent paper [1], we studied the electromagnetic energy flow near a single sphere (referred as part I). In
this paper, we will focus on the case of multi-spheres. We will firstly develop a recursive algorithm for the light
scattering of multi-spheres. Then we will investigate the electromagnetic energy transport via linear chains of
Ag nanospheres. For multi-spheres, the electromagnetic near-field distribution has attracted increasing
interests recently [2–4]. The analytical solution of the light scattering of aggregates can be obtained by
extending Mie theory [5–7]. In the Mie theory [8], the scattering of light by a single sphere situated in a
homogeneous medium was solved directly as a boundary condition problem. More complex scattering
problems of aggregates [5–7,9–15] need to be solved by the generalized Mie theory, which uses either T-matrix
method [9,10] or the order-of-scattering (OS) method [6,7]. The generalized Mie theory is widely used in the
calculation of near-field optics, such as single-molecule surface-enhanced Raman scattering [16,17] and
e front matter r 2006 Elsevier Ltd. All rights reserved.
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integrated optics [2,4]. Although a lot of other calculation methods such as discrete dipole approximation [18],
and the finite-difference time-domain [19] have been also well developed, the generalized Mie theory is more
rigorous and powerful for spherical nanoparticles as its lower computational demand than other methods
[5,20,21].

Based on the Mie theory, the T-matrix approach which was introduced by Waterman [22] is widely used.
Similar to the original Mie theory, the incident and scattered field are expanded into the vector spherical
harmonics (VSH), where the addition theorem for translations of VSH translating between coordinates
originated at the centers of different spheres is applied [23]. The scattered field can be obtained directly by
solving linear system of equations which contain Mie scattering coefficients and the translation coefficients [7].
Various techniques to calculate T-matrix of multi-spheres have been reported, such as iterative [24] and
recursive [25] method. However, this method is tedious when the distances between spheres turn to small or
the number of spheres L becomes large. As the decreasing of distance between spheres, multi-polars of higher
order have to be considered, that increases the size of equations, while the increasing of the number of spheres
L naturally increases the size of equations. Another approach used in the generalized Mie theory is the OS
method in which the field of scattered light is expressed as a sum of scattered field of different orders. By
tracing the light path between spheres, scattered field in each scattering event can be obtained by applying
boundary conditions of single sphere. The solution of two spheres was given by Fuller [7]. Recently, we
developed an recursive OS algorithm to calculate the near-field distribution of the scattered field of multiple
nanospheres [26]. The OS method is usually fast than T-matrix approaches in many cases, when a fast
convergence happens for rather small OS [7]. However, it is not the case at the resonance, where the
convergence cannot be obtained even for very high OS [20,27]. One way to avoid this divergent problem is
substituting the summation of different OS by matrix inversion (MI). Such an approach is known for the case
of two spheres [6], but the complex scattering events for multi-spheres still need more careful consideration in
order to obtain a proper expression.

Here we develop a proper MI approach based on the recursive OS method for multiple nanospheres, which
can avoid the divergent problem at resonance conditions. The advantage is also that the dimension of matrix
for inversion carried in our method is still same as a single particle, which results L2 times smaller than the T-
matrix approach; hence our algorithm consumes less computational time.

This newly developed MI method is then applied to investigate the light-transport properties of linear chains
of Ag nanospheres, which has recently become an interesting subfield of plasmon-assisted waveguide [2].
Different from Quinten et al. [4] where a linear chain of Ag nanoparticles was investigated at a fixed resonant
frequency of an isolated Ag sphere, we will investigate the interested frequency range to find the optimal
transport conditions. Due to the coupling between Ag spheres in the chain, the resonant frequency of chain
can be largely different from the isolated sphere and this resonant frequency varies with the width of the gap
between two adjacent spheres. A certain incident frequency will correspond to a most favorite geometry, and
vice versa.

2. Method

Based on the Mie theory [8], both the incident electric field and the scattered electric field of the ensemble of
L spheres can be expanded in the form of the VSH as:

iEl ¼
P1
n¼1

Pn
m¼�n

P2
p¼1

iCl
mnp mn1p
�� �

;

sE ¼
P�L

l¼1

sEl ¼
P�L

l¼1

P1
n¼1

Pn
m¼�n

P2
p¼1

sCl
mnp mn3p
�� �

;

(1)

where iCl
mnp and

sCl
mnp are the expansion coefficients for the VHS mnjp

�� �
centered at the lth sphere, with p ¼ 1

for Mj
mn and p ¼ 2 for Nj

mn, respectively, n is the number of multi-poles and m is the corresponding angular
number, and j ¼ 1, 2, 3, 4 corresponds to spherical functions jn, yn, hð1Þn , respectively [28]. The symbol � means
that the sum should occur in Cartesian coordinates. By summing single scattering events, the scattering
coefficients sCl

mnp are functions of the incident coefficients
iCl

mnp, the corresponding Lorenz–Mie coefficients al
n
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and bl
n, and the translation coefficients lhAmn

mn and lhBmn
mn between sphere l and sphere h [29,30], and written as:
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h
n ; b

h
u ;
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mnÞ. (2)

The corresponding magnetic fields are expanded as:
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(3)

due to the simple relation between the E field and the H field, and the relations between the normal modes:
H ¼ 1=iomrE; N ¼ 1=krM; M ¼ 1=krN.

In order to calculate Eq. (2), we define the matrix representation of the scattering matrix T as the function of
the matrix G of the incident coefficients [26] and the response matrix C of the L-spheres system. For a single
sphere, the scattering matrix is simply written as:

1T ¼ G1Cð1Þ, (4)

where C(1)
¼ S1, and S1 is the matrix of the Mie scattering coefficients of this single particle as defined in

Ref. [26].
Similar to Ref. [26], the scattering matrixes of two spheres are:

2T1 ¼ ðG1S1 þ G2S2O21S1Þ
PNos

i¼0

ðO12S2O21S1Þ
i;

2T2 ¼ ðG2S2 þ G1S1O12S2Þ
PNos

i¼0

ðO21S1O12S2Þ
i:

(5)

In order to use the response matrix, Eq. (5) is rewritten as:

2T1;
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The summation of scattering orders here can be accounted for to the infinite order by the matrix inverse:

XNos

i¼0

ðOkjSjOjkSkÞ
i
¼

1

1� OkjSjOjkSk

. (7)

When the third sphere is added, this new sphere is irradiated by both the incident light and scattering light
from 1 and 2 spheres, and scattered back and forth. The scattering matrix of the added sphere is

3T3 ¼ ððG1;G2ÞCð2ÞO0
ð2Þ

S3 þ G3S3Þ
XNos

i¼0

Oð2ÞCð2ÞO0ð2ÞS3

� �i

, (8)

where

Oð2Þ ¼ O3;1;O3;2

� �
; O0ð2Þ ¼

O1;3

O2;3

 !
.
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In the format of the response matrix, Eq. (8) is rewritten as:

3T3 ¼ ðG1;G2;G3Þ

Cð3Þ13
Cð3Þ23
Cð3Þ33

0
BB@

1
CCA, (9)

where

Cð3Þ33 ¼ S3

PNos

i¼0

ðOð2ÞCð2ÞO0ð2ÞS3Þ
i;

Cð3Þi3 ¼
P2
j¼1

Cð2Þij Oj;3C
ð3Þ
33 i ¼ 1; 2:

For 1st and 2nd sphere again, both the scattered light from 3rd sphere and the incident light work as the
illumination field. With the known scattering matrix of the 3rd sphere, similar to Eq. (5), the scattering
matrixes of 1 and 2 spheres are:

ð3T1;
3T2Þ ¼ ½ðG1;G2Þ þ

3T3Oð2Þ�Cð2Þ. (10)

In the format of the response matrixes and by inserting Eq. (9), it is not difficult to obtain:
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� �
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where

Cð3Þij ¼ Cð2Þij þCð3Þi3
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ð2Þ
kj i; j ¼ 1; 2
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P2
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ð2Þ
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Combining with Eq. (9) and Eq. (11), the scattering matrixes of 3-sphere system can be obtained:

3T1;
3T2;

3T3

� �
¼ G1;G2;G3ð ÞCð3Þ. (12)

Here, the summation can be substituted by the MI as:

XNos

i¼0

ðOð2ÞCð2ÞO0ð2ÞS3Þ ¼
1

1� Oð2ÞCð2ÞO0ð2ÞS3

. (13)

Similarly, the scattering matrixes of the L-spheres system can deduced as:

½LT1;
LT2;

LT3 . . .
LTL� ¼ ½G1;G2;G3 . . .GL�CðLÞ, (14)

where
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CðLÞpq ¼ CðL�1Þpq þCðLÞpL

XL�1
j¼1

OL;jC
ðL�1Þ
jq p; q ¼ 1 . . .L� 1,

where OðL�1Þ ¼ ½OL1;OL2; :::;OL;L�1� and O0ðL�1Þ ¼ ½OL1;OL2; :::;OL;L�1�
T. The summation of the different

orders of scattering matrix can be obtained by the MI as

XNos

i¼0

ðOðL�1ÞCðL�1ÞO0ðL�1ÞSLÞ ¼
1

1� OðL�1ÞCðL�1ÞO0ðL�1ÞSL

. (15)

In this approach, we start from single sphere, two spheres, three spheres and recursively to obtain the
scattering matrix of L spheres. We draw attention to the fact that the dimension of the matrix of a L-spheres
system for inversion in Eq. (15) is of same size as that of a single sphere, which can greatly deduce the
simulation time.

3. Electromagnetic energy transport in metal nanoparticle chains

How to transport light energy in metal nanoparticle chains below the diffraction limit is a fundamental
problem of integrated optics [4,31]. The transport procedure involves the near-field coupling between surface
plasmon–polariton modes of adjacent nanoparticles [2]. Here we investigate the 3 dB damping length of a
chain of equal spacing Ag nanospheres with radius R ¼ 25 nm, in which only the first Ag sphere is irradiated
by incident light. The 3 dB damping length is defined as the intensity of light decreasing to the 10�0.3 of
incident light. The investigated field point is at the surface of the spheres shown in the inset of Fig. 1 marked
with black points, and the number of Ag spheres L is set to large enough in order to overcome the influence of
the back scattering from the end of the chain. Fig. 1 shows 3 dB damping length of the Ag chain at different
frequency of the incident light, which polarization is parallel to the axis of the chain. The curves are
corresponding to the 3 dB damping length vs. the frequency at different geometries of chains, where the gap
between two nearest spheres surfaces are 2, 7.5, 25, and 50 nm, respectively. Unlike the investigations of the
light propagation at a fixed frequency in Ref. [4], we found that there is a favorite coupling frequency
corresponding to the largest 3 dB damping length at certain geometry of a chain. As the width of the gap
decreases, the width of the resonance peak is broadening and the best coupling frequency is red shift due to the
strong plasmon coupling between close-packed metal nanoparticles.
Fig. 1. The 3dB damping length vs. the energy of incident photon. The widths of the gap between neighboring spheres (R ¼ 25 nm) are 2,

7.5, 25, and 50 nm, respectively. The investigated field points are marked with black points shown in the inset.
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It should be noted that the simulation results are obtained using the method described above. The curves are
smooth even at resonance condition. However, if we adopt the origin OS method, these curves become discrete
close to the resonance frequency due to the no convergence of the summation of scattering orders at the
resonance conditions. At the non-resonant frequency, these two methods give the same results which indicate
both methods are correct in principle.

Fig. 2 shows the damping length varies with the gap between spheres at different incident frequencies. At
certain frequency, there is an optimal guiding geometry, which is consistent with the conclusion obtained by
Quinten et al. When the photon energy is larger than the plasmon resonance energy, the light can hardly
transport via the Ag linear chains. For this case, the result of E ¼ 3.60 eV is shown as the dashed line in Fig. 2.
While at the plasmon resonance frequency of Ag nanoparticles at E ¼ 3.38 eV, the light can propagate a
Fig. 2. The 3dB damping length vs. the width of gap between spheres at different photon energy 2.95, 3.30, 3.38, and 3.60 eV, respectively.

Fig. 3. Maximum 3dB damping length (to the right) and the corresponding favorite incident photon energy (to the left) vs. the width of

gap between neighboring spheres.
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considerable distance even for large gaps between nanoparticles as shown in the dotted line. The larger
damping length is obtained at a lower incident frequency, e.g. E ¼ 2.95 eV (solid line in Fig. 1), but a smaller
gap is required and the band width becomes very narrow as well.

Fig. 3 shows the maximum 3dB damping length of the light that transports via linear Ag chains with a fixed
radius of sphere 25 nm at different separation between two adjacent spheres (to the right). For a small gap of a
3 nm gap, the maximum 3dB damping length is �1.36 mm, and the corresponding incident photon energy is
about 2.88 eV. At the small-gap region, the propagation of the light is strongly dependent on the size of the
gap, which indicates a strong geometric resonance based on the resonant plasmon coupling among metal
nanoparticles. However, when the gap becomes more than 5 nm, the propagation of the light is not so sensitive
to the size of the gap, and the maximum damping length slowly decrease with the increase of the size of the
gap. At the ‘‘large-gap’’ region, the plasmon coupling between metal nanoparticles becomes weak with the
increase of the size of the gap, while the single-particle plasmon resonance becomes the driving force to
promote the propagation of the light. For a 3 dB damping length 40.6 mm, the energy of photon that
transports via linear Ag chains investigated here has to be in the range from 2.5 to 3.42 eV (362–495 nm).

4. Summary

Here we develop a MI approach based on the recursive OS method to calculate the optical near-field of
aggregates of nanospheres. By introducing the MI technique, the divergent problem encountered in the origin
OS method is avoided. Moreover, the dimension of matrix in this method does not increase with the number
of spheres L, which largely speed up the calculations than the T-matrix method where the dimension of the
matrix increases as L2. With this new method, we investigate the light-transport properties of Ag chains of
nanospheres. We found that the damping lengths of linear chains of Ag spheres with a fixed radius R ¼ 25 nm
were dependent on both the incident frequency and the width of the gap between neighboring spheres. For a
fixed width of the gap, there exists a best coupling frequency, and vice versa. The maximal 3 dB damping
length can reach 1.4 mm for a proper geometry and incident frequency.
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