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Calculation of the near field of aggregates of
arbitrary spheres
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We study a numerical method of calculating the near field of ensembles of arbitrary spheres by extending Mie
theory. A recursive method based on the orders of scattering is presented. This method represents a concise
way to calculate the near field of aggregates of any number of arbitrary spheres. Numerical examples are
given to show its validity. © 2004 Optical Society of America
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1. INTRODUCTION
Recently, there has been significant focus on near-field
optics,1 mainly as a result of rapid development in the fol-
lowing fields: (1) high spatial resolution of scanning
near-field optical microscopy,1–3 (2) single-molecule spec-
troscopy by surface-enhanced Raman scattering,4–6 (3)
nanodevices based on surface-plasmon photonic forces,7,8

and (4) quantum-optical processes in photonic crystals.9

In these fields, the calculation of the near field of en-
sembles of nanoparticles is a fundamental theoretical is-
sue. However, as is well known, the tedious calculation
processes for those multiple scatterers challenge both the
numerical methods and computational capacities.1,10

When the nanoparticles can be simplified to spheres,
the analytical solution to the light scattering can be ob-
tained by extending Mie theory.11 Basically, there are
two kinds of treatment. The first one is to consider the
boundary conditions of all the particles at once to obtain a
super-matrix, the so called T-matrix.12–14 In principle,
the light scattering of aggregates can then be solved. It
is true that the T-matrix treatment is successful for far-
field calculations, e.g., for extinction–scattering–
absorption spectra.13,14 However, for calculations of near
field, this method would not really be successful for aggre-
gates composed of more than two particles. The reason is
mainly that the entangled interparticle couplings among
many particles will increase the size of the scattering ma-
trix tremendously, and thus, expedient calculations be-
come difficult. The second treatment is based on orders
of scattering, which consist of a sum of simple scattering
events from single particles in which the boundary condi-
tions are considered separately in each scattering event.
Therefore, the full-boundary-condition problem is turned
into a problem of multiple scattering with some transla-
tion rules between the scatterers. For the ensemble of
two particles, the solution was given by Fuller.15 Re-
cently, we have found a simple way to sort out the order of
scattering thoroughly for ensembles of any number of
spheres.16 Although the right order of scattering events
is necessary for the correct calculations, the tedious cal-
culation process is still the obstacle for large aggregates.

In the paper a recursive method is presented that is
1084-7529/2004/050804-06$15.00 ©
based on the method of orders of scattering for aggregates
composed of any number of spheres. The method starts
with two particles and then uses recursion to obtain the
solution for any number of particles. This paper is orga-
nized as follows. In Section 2 we start with the extended
Mie theory. In Section 3 we show a recursive solution to
sum single-scattering events for ensembles and to obtain
the matrix representations that are suitable for calcula-
tions. In Section 4 two numerical examples are pre-
sented. In Section 5 a summary is given.

2. THEORY
On the basis of Mie theory,11 both the incident electric
field and the scattered electric field of the ensemble of L
spheres can be expanded in the form of the vector spheri-
cal harmonics as
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where iCmnp
l and sCmnp

l are the expansion coefficients for
the vector spherical harmonics umnjp& centered at the lth
sphere, with p 5 1 for Mmn
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hn
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The corresponding magnetic fields are expanded as
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because of the simple relation between the E field and the
H field, and the relations between the normal modes:
H 5 1/ivm¹ 3 E, N 5 1/k¹ 3 M, M 5 1/k¹ 3 N.17

Hence, the computational problem is how to represent the
function TI in Eq. (2) in a more efficient way to facilitate
calculations.

3. NUMERICAL METHODS

To calculate the scattering field for ensembles of nano-
spheres expediently, we define the following matrix:
where N is the number from which higher numbers of
multipoles are truncated, M is the maximum angular
number with M < N, cn

l and dn
l are the penetrating

Lorenz–Mie coefficients, and the superscript D transfers
the elements in the vector to the corresponding diagonal
elements in the matrix with zero nondiagonal elements.
The selection of M and N depends on the requirements of
the convergence in the simulations. Based on the above
matrix, we then construct the following matrix:
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l 0

0 U2
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For a single particle, the scattering matrix and the
scattered field are easily written as

1T 5 GS,

Es 5 1TW3
E ,

Hs 5
k

ivm
1TW3

H . (6)

For the ensemble of two spheres, we have to consider dif-
ferent orders of scattering from different scatterers, if we
do not treat it as a full-boundary problem. The scatter-
ing matrix of one of the spheres, which represents the
outgoing wave from this sphere, is a sum of the different
orders of scattering originated from this sphere as a re-
sult of the optical response to the incident field and the
scattered field from the other sphere:

2T1 5 ~1T1 1 1T2V21S1!(
i50

Nos

~V12S2V21S1!i,

2T2 5 ~1T2 1 1T1V12S2!(
i50
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~V21S1V12S2!i,

(7)

where Nos is the number of the scattering order, from
which the higher orders will be ignored. V21S1 repre-
sents the field that is scattered by sphere 2 and then scat-
tered by sphere 1.

A three-particle system can be considered as a two-
particle system plus one additional sphere. The scatter-
ing matrix of this additional sphere is represented by
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It is easy to obtain the scattering matrix of one of the
other two spheres by simply permuting the number of the
subscripts:
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In general, an L-particle system can be considered as
an (L 2 1)-particle system plus one additional sphere.
The scattering matrix of this additional sphere is repre-
sented as
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The scattering matrix of any lth sphere can be obtained
similarly to Eqs. (9) as
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The total scattered field is then written as
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It is not difficult to obtain the penetrating field inside any
lth particle as
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Hence, we have a recursive solution to the scattering ma-
trix of any number of spheres. It should be noted that
the size of the scattering matrix is fixed when the maxi-
mum multipole number N and the maximum angular
number M are chosen, whatever the numbers of spheres.
Such a case can certainly facilitate calculations, since
for the ordinary T-matrix method, the size of the scatter-
ing matrix will increase as L2. It is also worthwhile
knowing that the scattering orders can be accounted for
to the infinite order by the matrix inverse, i.e.,
( i50

` (VkjSjV jkSk) i 5 1/(1 2 VkjSjV jkSk) in principle.
But the matrix inverse is usually not applicable for large
scattering matrices because of either longer computa-
tional time or singularity problems.

4. NUMERICAL EXAMPLES
Figure 1 gives an example of calculations of the local field
of three Ag spheres with different incident polarizations.
It is clear that the local field intensity varies with the in-
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Fig. 1. Local intensity enhancement distribution I/I0 in logarithmic scale in the plane of the wave vector k and the electric field E
through the centers of three identified Ag spheres with radius R 5 35 nm at the incident wavelength 514.5 nm for different incident
polarizations as illustrated by the arrows of E and k. The dielectric function of Ag is obtained from Johansson and Christy.21 The
number of the multipoles is L 5 16 and the orders of scattering Nos 5 200, which are enough for the convergence of the calculations.
cident polarization. For a two-particle system, such an
effect has been demonstrated clearly by the recent experi-
ment with surface-enhanced Raman scattering.20 The
surface-enhanced Raman scattering signals of the dimers
reached maximum when the incident field was parallel to
the axes of the dimers, while there was no enhancement
at all when the incident field was perpendicular to the
axes of the dimers. The experiment indicates that inter-
particle coupling is driven by the electric field that is
aligned with the axis of the dimer. For the current case
of the triplet, the interparticle coupling still seems driven
by the component of the electrical field parallel to the axis
of any two particles, but the local field intensity distribu-
tion is affected by the presence of the additional particle.
For example, the local intensity in the cavity between
sphere 1 and sphere 3 is strongly enhanced—more than
1000 times in Fig. 1a, where the incident electrical field is
parallel to the axis of these two spheres. In the mean-
time, the local intensity in the cavity between sphere 1
and sphere 2, and the cavity between sphere 2 and sphere
3 is also enhanced, but not so much. When the incident
field is perpendicular to the axis of two spheres, e.g.,
sphere 2 and sphere 3 in Fig. 1b, no enhancement can be
found in the cavity between those spheres, but the cou-
plings between sphere 1 and 3 and sphere 1 and 2 are still
strong because of the component of the electrical field in
the directions of the axes. In Fig. 1c, where the incident
polarization was rotated slightly from that in Fig. 1b, the
local intensity in the cavity between sphere 2 and sphere
3 starts to increase.

Fig. 1d is quite similar to Fig. 1b, just by changing the
incident polarization E to be perpendicular to the axis of
sphere 1 and 3 instead of the axis of sphere 2 and 3 in Fig.
1b. The purpose of showing this case is to demonstrate
the validity of the calculations. Since the coordinates of
the three particles are fixed in the different polarization
calculations, the expansion coefficients of the incident
field and the scattered field will be totally different if we
vary the incident polarization E and the incident wave
vector k. But the numerical results from the different
processes are indeed the same when they are expected to
be. The validation is confirmed by other, different, calcu-
lations also.

For systems with more spheres, the entangled coupling
becomes more complex. Figure 2 shows an example of
five Ag spheres with different sizes. The local field in the
cavities between the particles is greatly enhanced, but the
variation with incident polarization is not as significant
as in Fig. 1. The reason is that the interparticle coupling
caused by the scattered field from other neighboring
spheres becomes stronger, hence they lose the incident po-
larization sensitivity.

5. SUMMARY
In summary, we have presented a recursive numerical
method for solving the light scattering of ensembles of
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Fig. 2. Local intensity distribution I/I0 in the logarithmic scale in the plane through the centers of five different Ag spheres; 1 (R
5 55 nm), 2 (R 5 50 nm), 3 (R 5 45 nm), 4 (R 5 45 nm), and 5 (R 5 50 nm) at the incident wavelength 514.5 nm, with the wave
vector k perpendicular to this plane and the different incident polarization E illustrated by the white arrows. The number of the mul-
tipoles is L 5 16 and the orders of scattering Nos 5 200.
any number of particles by extending Mie theory; this
method makes it possible to calculate the optical near
field concisely. The examples of calculations show the va-
lidity of the current method. As a result of the numerical
possibilities, the current numerical method can easily be
applied in many fields, e.g., surface-enhanced Raman
scattering, apertureless scanning near-field optical mi-
croscopy, photonic crystals, and surface plasmon photon-
ics.
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